References

1

Wenjian Liu, Gongyi Hong, Dadi Dai, Lemin Li, and Michael Dolg. The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO and YbS Theoretical Chemistry Accounts, 96(2):75–83, Jul 1997. doi:10.1007/s002140050207.

2

Jun Gao, Wenjian Liu, Bo Song, and Chengbu Liu. Time-dependent four-component relativistic density functional theory for excitation energies The Journal of Chemical Physics, 121(14):6658–6666, 2004. doi:10.1063/1.1788655.

3

Jun Gao, Wenli Zou, Wenjian Liu, Yunlong Xiao, Daoling Peng, Bo Song, and Chengbu Liu. Time-dependent four-component relativistic density-functional theory for excitation energies. II. The exchange-correlation kernel The Journal of Chemical Physics, 123(5):054102, 2005. doi:10.1063/1.1940609.

4

Daoling Peng, Wenli Zou, and Wenjian Liu. Time-dependent quasirelativistic density-functional theory based on the zeroth-order regular approximation The Journal of Chemical Physics, 123(14):144101, 2005. doi:10.1063/1.2047554.

5

Wenhua Xu, Jianyi Ma, Daoling Peng, Wenli Zou, Wenjian Liu, and Volker Staemmler. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study Chemical Physics, 356(1):219–228, 2009. Moving Frontiers in Quantum Chemistry:. doi:10.1016/j.chemphys.2008.10.011.

6

WenHua Xu, Yong Zhang, and WenJian Liu. Time-dependent relativistic density functional study of Yb and YbO Science in China Series B: Chemistry, 52(11):1945–1953, Nov 2009. doi:10.1007/s11426-009-0279-5.

7

Zhendong Li, Bingbing Suo, Yong Zhang, Yunlong Xiao, and Wenjian Liu. Combining spin-adapted open-shell TD-DFT with spin–orbit coupling Molecular Physics, 111(24):3741–3755, 2013. doi:10.1080/00268976.2013.785611.

8

Werner Kutzelnigg and Wenjian Liu. Quasirelativistic theory equivalent to fully relativistic theory The Journal of Chemical Physics, 123(24):241102, 2005. doi:10.1063/1.2137315.

9

Wenjian Liu and Daoling Peng. Exact two-component Hamiltonians revisited The Journal of Chemical Physics, 131(3):031104, 2009. doi:10.1063/1.3159445.

10

Wenjian Liu and Daoling Peng. Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory The Journal of Chemical Physics, 125(4):044102, 2006. doi:10.1063/1.2222365.

11

Daoling Peng, Wenjian Liu, Yunlong Xiao, and Lan Cheng. Making four- and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule” The Journal of Chemical Physics, 127(10):104106, 2007. doi:10.1063/1.2772856.

12

Zhendong Li, Yunlong Xiao, and Wenjian Liu. On the spin separation of algebraic two-component relativistic Hamiltonians The Journal of Chemical Physics, 137(15):154114, 2012. doi:10.1063/1.4758987.

13

Zhendong Li, Yunlong Xiao, and Wenjian Liu. On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties The Journal of Chemical Physics, 141(5):054111, 2014. doi:10.1063/1.4891567.

14

Wenjian Liu and Ingvar Lindgren. Going beyond “no-pair relativistic quantum chemistry” The Journal of Chemical Physics, 139(1):014108, 2013. doi:10.1063/1.4811795.

15

Wenjian Liu. Advances in relativistic molecular quantum mechanics Physics Reports, 537(2):59–89, 2014. doi:10.1016/j.physrep.2013.11.006.

16

Yunlong Xiao, Daoling Peng, and Wenjian Liu. Four-component relativistic theory for nuclear magnetic shielding constants: The orbital decomposition approach The Journal of Chemical Physics, 126(8):081101, 2007. doi:10.1063/1.2565724.

17

Yunlong Xiao, Wenjian Liu, Lan Cheng, and Daoling Peng. Four-component relativistic theory for nuclear magnetic shielding constants: Critical assessments of different approaches The Journal of Chemical Physics, 126(21):214101, 2007. doi:10.1063/1.2736702.

18

Lan Cheng, Yunlong Xiao, and Wenjian Liu. Four-component relativistic theory for NMR parameters: Unified formulation and numerical assessment of different approaches The Journal of Chemical Physics, 130(14):144102, 2009. doi:10.1063/1.3110602.

19

Lan Cheng, Yunlong Xiao, and Wenjian Liu. Four-component relativistic theory for nuclear magnetic shielding: Magnetically balanced gauge-including atomic orbitals The Journal of Chemical Physics, 131(24):244113, 2009. doi:10.1063/1.3283036.

20

Qiming Sun, Wenjian Liu, Yunlong Xiao, and Lan Cheng. Exact two-component relativistic theory for nuclear magnetic resonance parameters The Journal of Chemical Physics, 131(8):081101, 2009. doi:10.1063/1.3216471.

21

Qiming Sun, Yunlong Xiao, and Wenjian Liu. Exact two-component relativistic theory for NMR parameters: General formulation and pilot application The Journal of Chemical Physics, 137(17):174105, 2012. doi:10.1063/1.4764042.

22

Yunlong Xiao, Yong Zhang, and Wenjian Liu. New Experimental NMR Shielding Scales Mapped Relativistically from NSR: Theory and Application Journal of Chemical Theory and Computation, 10:600–608, 01 2014. doi:10.1021/ct400950g.

23

Yunlong Xiao and Wenjian Liu. Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor: Linear molecules The Journal of Chemical Physics, 139(3):034113, 2013. doi:10.1063/1.4813594.

24

Yunlong Xiao and Wenjian Liu. Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor The Journal of Chemical Physics, 138(13):134104, 2013. doi:10.1063/1.4797496.

25

Yunlong Xiao, Yong Zhang, and Wenjian Liu. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals The Journal of Chemical Physics, 141(16):164110, 2014. doi:10.1063/1.4898631.

26

Rundong Zhao, Yong Zhang, Yunlong Xiao, and Wenjian Liu. Exact two-component relativistic energy band theory and application The Journal of Chemical Physics, 144(4):044105, 2016. doi:10.1063/1.4940140.

27

Wenli Zou, Guina Guo, Bingbing Suo, and Wenjian Liu. Analytic Energy Gradients and Hessians of Exact Two-Component Relativistic Methods: Efficient Implementation and Extensive Applications Journal of Chemical Theory and Computation, 16(3):1541–1554, 2020. doi:10.1021/acs.jctc.9b01120.

28

Junzi Liu, Yong Zhang, and Wenjian Liu. Photoexcitation of Light-Harvesting C–P–C60 Triads: A FLMO-TD-DFT Study Journal of Chemical Theory and Computation, 10(6):2436–2448, 2014. doi:10.1021/ct500066t.

29

Fangqin Wu, Wenjian Liu, Yong Zhang, and Zhendong Li. Linear-Scaling Time-Dependent Density Functional Theory Based on the Idea of “From Fragments to Molecule” Journal of Chemical Theory and Computation, 7:3643–3660, 09 2011. doi:10.1021/ct200225v.

30

Zhendong Li, Hongyang Li, Bingbing Suo, and Wenjian Liu. Localization of Molecular Orbitals: From Fragments to Molecule Accounts of Chemical Research, 47(9):2758–2767, 2014. doi:10.1021/ar500082t.

31

Hongyang Li, Wenjian Liu, and Bingbing Suo. Localization of open-shell molecular orbitals via least change from fragments to molecule The Journal of Chemical Physics, 146(10):104104, 2017. doi:10.1063/1.4977929.

32

Minghong Yuan, Yong Zhang, Zhi Qu, Yunlong Xiao, and Wenjian Liu. Sublinear scaling quantum chemical methods for magnetic shieldings in large molecules The Journal of Chemical Physics, 150(15):154113, 2019. doi:10.1063/1.5083193.

33

Zikuan Wang and Wenjian Liu. iOI: An Iterative Orbital Interaction Approach for Solving the Self-Consistent Field Problem Journal of Chemical Theory and Computation, 17(8):4831–4845, 2021. doi:10.1021/acs.jctc.1c00445.

34

Zhendong Li and Wenjian Liu. Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory The Journal of Chemical Physics, 133(6):064106, 2010. doi:10.1063/1.3463799.

35

Zhendong Li, Wenjian Liu, Yong Zhang, and Bingbing Suo. Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application The Journal of Chemical Physics, 134(13):134101, 2011. doi:10.1063/1.3573374.

36

Zhendong Li and Wenjian Liu. Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation The Journal of Chemical Physics, 135(19):194106, 2011. doi:10.1063/1.3660688.

37

Zhendong Li and Wenjian Liu. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet–Doublet Transitions Journal of Chemical Theory and Computation, 12(1):238–260, 2016. doi:10.1021/acs.jctc.5b01158.

38

Zhendong Li and Wenjian Liu. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions Journal of Chemical Theory and Computation, 12(6):2517–2527, 2016. doi:10.1021/acs.jctc.5b01219.

39

Zhendong Li and Wenjian Liu. Theoretical and numerical assessments of spin-flip time-dependent density functional theory The Journal of Chemical Physics, 136(2):024107, 2012. doi:10.1063/1.3676736.

40

Zhendong Li and Wenjian Liu. First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels The Journal of Chemical Physics, 141(1):014110, 2014. doi:10.1063/1.4885817.

41

Zhendong Li, Bingbing Suo, and Wenjian Liu. First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels The Journal of Chemical Physics, 141(24):244105, 2014. doi:10.1063/1.4903986.

42

Zikuan Wang, Chenyu Wu, and Wenjian Liu. NAC-TDDFT: Time-Dependent Density Functional Theory for Nonadiabatic Couplings Accounts of Chemical Research, 54(17):3288–3297, 2021. doi:10.1021/acs.accounts.1c00312.

43

Zikuan Wang, Zhendong Li, Yong Zhang, and Wenjian Liu. Analytic energy gradients of spin-adapted open-shell time-dependent density functional theory The Journal of Chemical Physics, 153(16):164109, 2020. doi:10.1063/5.0025428.

44

Daoling Peng, Jianyi Ma, and Wenjian Liu. On the construction of Kramers paired double group symmetry functions International Journal of Quantum Chemistry, 109(10):2149–2167, 2009. doi:10.1002/qua.22078.

45

Wenjian Liu and Mark R. Hoffmann. SDS: the `static–dynamic–static' framework for strongly correlated electrons Theoretical Chemistry Accounts, 133(5):1481, Apr 2014. doi:10.1007/s00214-014-1481-x.

46

Wenjian Liu and Mark R. Hoffmann. iCI: Iterative CI toward full CI Journal of Chemical Theory and Computation, 12(3):1169–1178, 2016. doi:10.1021/acs.jctc.5b01099.

47

Ning Zhang, Wenjian Liu, and Mark R. Hoffmann. Iterative Configuration Interaction with Selection Journal of Chemical Theory and Computation, 16(4):2296–2316, 2020. doi:10.1021/acs.jctc.9b01200.

48

Ning Zhang, Wenjian Liu, and Mark R. Hoffmann. Further Development of iCIPT2 for Strongly Correlated Electrons Journal of Chemical Theory and Computation, 17(2):949–964, 2021. doi:10.1021/acs.jctc.0c01187.

49

Yibo Lei, Bingbing Suo, and Wenjian Liu. iCAS: Imposed Automatic Selection and Localization of Complete Active Spaces Journal of Chemical Theory and Computation, 17(8):4846–4859, 2021. doi:10.1021/acs.jctc.1c00456.

50

Yang Guo, Ning Zhang, Yibo Lei, and Wenjian Liu. iCISCF: An Iterative Configuration Interaction-Based Multiconfigurational Self-Consistent Field Theory for Large Active Spaces Journal of Chemical Theory and Computation, 17(12):7545−7561, 2021. doi:10.1021/acs.jctc.1c00781.

51

Chao Huang, Wenjian Liu, Yunlong Xiao, and Mark R. Hoffmann. iVI: An iterative vector interaction method for large eigenvalue problems Journal of Computational Chemistry, 38(29):2481–2499, 2017. doi:10.1002/jcc.24907.

52

Chao Huang and Wenjian Liu. iVI-TD-DFT: An iterative vector interaction method for exterior/interior roots of TD-DFT Journal of Computational Chemistry, 40(9):1023–1037, 2019. doi:10.1002/jcc.25569.

53

H. B. Schlegel and M. J. Frisch. Transformation between Cartesian and pure spherical harmonic Gaussians Int. J. Quant. Chem., 54:83–87, 1995. doi:10.1002/qua.560540202.

54

Benjamin P. Pritchard, Doaa Altarawy, Brett Didier, Tara D. Gibsom, and Theresa L. Windus. A New Basis Set Exchange: An Open, Up-to-date Resource for the Molecular Sciences Community J. Chem. Inf. Model., 59:4814–4820, 2019. doi:10.1021/acs.jcim.9b00725.

55

T. Q. Teodoro, A. B. F. da Silva, and R. L. A. Haiduke. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. I. The s- and p-Block Elements J. Chem. Theory Comput., 10:3800–3806, 2014. doi:10.1021/ct500518n.

56

T. Q. Teodoro, A. B. F. da Silva, and R. L. A. Haiduke. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. II. The d-Block Elements J. Chem. Theory Comput., 10:4761–4764, 2014. doi:10.1021/ct500804j.

57

T. Q. Teodoro, L. Visscher, A. B. F. da Silva, and R. L. A. Haiduke. Relativistic Prolapse-Free Gaussian Basis Sets of Quadruple-ζ Quality: (aug-)RPF-4Z. III. The f-Block Elements J. Chem. Theory Comput., 13:1094–1101, 2017. doi:10.1021/acs.jctc.6b00650.

58

J.-P. Blaudeau, S. R. Brozell, S. Matsika, Z. Zhang, and R. M. Pitzer. Atomic orbital basis sets for use with effective core potentials Int. J. Quant. Chem., 77:516–520, 2000.

59

R. B. Ross, S. Gayen, and W. C. Ermler. Ab initio relativistic effective potentials with spin-orbit operators. V. Ce through Lu J. Chem. Phys., 100:8145–8155, 1994. doi:10.1063/1.466809.

60

W. C. Ermler, R. B. Ross, and P. A. Christiansen. Ab initio relativistic effective potentials with spin-orbit operators. VI. Fr through Pu Int. J. Quant. Chem., 40:829–846, 1991. doi:10.1002/qua.560400611.

61

C. S. Nash, B. E. Bursten, and W. C. Ermler. Ab initio relativistic effective potentials with spin-orbit operators. VII. Am through element 118 J. Chem. Phys., 106:5133–5142, 1997. doi:10.1063/1.473992.

62

C. S. Nash, B. E. Bursten, and W. C. Ermler. Erratum: “Ab initio relativistic effective potentials with spin-orbit operators. VII. Am through element 118” J. Chem. Phys., 111:2347–2347, 1999. doi:10.1063/1.479506.

63

A. Weigand, X. Cao, T. Hangele, and M. Dolg. Relativistic Small-Core Pseudopotentials for Actinium, Thorium, and Protactinium J. Phys. Chem. A, 118:2519–2530, 2014. doi:10.1021/jp500215z.

64

M. Dolg and X. Cao. Accurate Relativistic Small-Core Pseudopotentials for Actinides. Energy Adjustment for Uranium and First Applications to Uranium Hydride J. Phys. Chem. A, 113:12573–12581, 2009. doi:10.1021/jp9044594.

65

D. J. Tozer and M. J. G. Peach. Molecular excited states from the SCAN functional Mol. Phys., 116:1504–1511, 2018. doi:10.1080/00268976.2018.1453094.

66

J. C. Boettger. Approximate two-electron spin-orbit coupling term for density-functional-theory DFT calculations using the Douglas-Kroll-Hess transformation Phys. Rev. B, 62:7809–7815, 2000. doi:10.1103/PhysRevB.62.7809.

67

M. Filatov, W. Zou, and D. Cremer. Spin-orbit coupling calculations with the two-component Normalized Elimination of the Small Component Method J. Chem. Phys., 139:014106, 2013. doi:10.1063/1.4811776.

68

S. Koseki, M. S. Gordon, M. W. Schmidt, and N. Matsunaga. Main Group Effective Nuclear Charges for Spin-Orbit Calculations J. Phys. Chem., 99:12764–12772, 1995. doi:10.1021/j100034a013.

69

S. Koseki, M. W. Schmidt, and M. S. Gordon. Effective Nuclear Charges for the First- through Third-Row Transition Metal Elements in Spin-Orbit Calculations J. Phys. Chem. A, 102:10430–10435, 1998. doi:10.1021/jp983453n.

70

L. Visscher and K. G. Dyall. Dirac–Fock Atomic Electronic Structure Calculations Using Different Nuclear Charge Distributions At. Data and Nucl. Data Tables, 67:207–224, 1997. doi:10.1006/adnd.1997.0751.

71

D. Andrae. Finite nuclear charge density distributions in electronic structure calculations for atoms and molecules Phys. Rep., 336:413–525, 2000. doi:10.1016/S0370-1573(00)00007-7.

72

D. Andrae. Relativistic Electronic Structure Theory, Part 1: Fundamentals, pages 203–258. Elsevier, Amsterdam, 2002.

73

H. Zhu, C. Gao, M. Filatov, and W. Zou. Mössbauer isomer shifts and effective contact densities obtained by the exact two-component (X2C) relativistic method and its local variants Phys. Chem. Chem. Phys., 22:26776–26786, 2020. doi:10.1039/d0cp04549g.

74

M. Römelt, S. Ye, and F. Neese. Calibration of Modern Density Functional Theory Methods for the Prediction of 57Fe Mössbauer Isomer Shifts: Meta-GGA and Double-Hybrid Functionals Inorg. Chem., 48:784–785, 2009. doi:10.1021/ic801535v.

75

M. Pápai and G. Vankó. On Predicting Mössbauer Parameters of Iron-Containing Molecules with Density-Functional Theory J. Chem. Theory Comput., 9:5004–5020, 2013. doi:10.1021/ct4007585.

76

L. C. Motta and J. Autschbach. Theoretical Prediction and Interpretation of 237Np Mössbauer Isomer Shifts J. Chem. Theory Comput., 17:6166–6179, 2021. doi:10.1021/acs.jctc.1c00687.

77

S. F. McWilliams, E. Brennan-Wydra, K. C. MacLeod, and P. L. Holland. Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes ACS Omega, 2:2594–2606, 2017. doi:10.1021/acsomega.7b00595.

78

Yong Zhang, Bingbing Suo, Zikuan Wang, Ning Zhang, Zhendong Li, Yibo Lei, Wenli Zou, Jun Gao, Daoling Peng, Zhichen Pu, Yunlong Xiao, Qiming Sun, Fan Wang, Yongtao Ma, Xiaopeng Wang, Yang Guo, and Wenjian Liu. BDF: A relativistic electronic structure program package The Journal of Chemical Physics, 152(6):064113, 2020. doi:10.1063/1.5143173.

79

Wenjian Liu, Fan Wang, and Lemin Li. The Beijing Density Functional (BDF) Program Package: Methodologies and Applications Journal of Theoretical and Computational Chemistry, 02(02):257–272, 2003. doi:10.1142/S0219633603000471.

80

Wenjian Liu, Fan Wang, and Lemin Li. Relativistic Density Functional Theory: The BDF Program Package, chapter 9, pages 257–282. Volume 5. World Scientific Publishing, 2004. doi:10.1142/9789812794901_0009.